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ABSTRACT

In this papef, we first investigate the distance structure
of cyclic codes of composite length. A lower bound on the
minimum distance for this class of codes is derived. In many
cases, the lower bound gives the true minimum distance of a code.
Then, we investigate the distance structure of the direct sum of
two cyclic codes of composite length. We show that, wunder
certain conditions, the direct-sum code provides two levels of
error correcting capability, and hence is a two-level unequal
error protection (UEP) code. Finally, a class of two-level UEP
cyclic direct-sum codes and a decoding algorithm for a subclass

of these codes are presented.



I. INTRODUCTION

Unequal error protection (UEP) codes{1-11] are desirable in
certain data communication situations. For example, consider a
data communication system in which each message from the
information source consists of several parts, and different parts
have different degrees of significance. More significant parts
require more protection against the channel errors, while the
less significant parts require 1less protection against the
channel errors. As a result, it is desired to use a code with
unequal error protection capabilities. Another situation where
UEP codes are desired is in broadcast communication systems[13-
15]. An m-user broadcast channel has one input and m outputs.
The single input and each output form a component channel. The
component channels may have different noise levels, and hence the
nessages transmitted over the component channels require
different levels of protection against errors.

UEP codes were first studied by Masnick and Wolf[l1], then by
many other coding theorists{2-15). 1In this paper, we investigate
cyclic UEP codes which are formed by taking the direct sums of
cyclic codes of composite length. We first investigate the
weight structure of cyclic codes of composite length. Then, we
analyze the distance structure of the direct sum of two cyclic
codes of composite length. We show that, under certain distance
conditions, the direct-sum code provides two levels of error-
correcting capability, and hence is a two-level UEP code.
Finally, a class of two-level UEP cyclic direct-sum codes is
presented. Also, a decoding algorithm for a subclass of two-
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level UEP cyclic direct-sum codes is devised.

II. WEIGHT STRUCTURE OF BINARY CYCLIC CODES QOF COMPOSITE LENGTH

Let n; and n, be two positive odd integers which are
relatively prime. Let

n = nyn,.
Let o be an element from some Galois field, say GF(29), with order
n. Hence o is a primitive n-th root of unity. Now we consider a
binary (n,k) cyclic code C with generator and parity polynomials,
g(X) and h(X), respectivély. It is known in coding theory that
the degree of g(X) is n-k, the degree of h(X) is k, and

Xx?+1 = g(X)h(X).
Let

Zg = ot : i=1,2,...,n-k)
and

2y = (a3 t 3=1,2,...,%)
be the root sets of g(X) and h(X) respectively. These twb sets
are disjoint and their union gives all the roots of X™1 in
GF(29), i.e.,

{1, «a, a2 y e an-l}

Since every code polynomial c(X) in C has the elements in Zg as

roots, we call the elements in Zg the zeros of C. No element in

Z, can be a root of every code polynomial in C. We call the
elements in Z, the nonzeros of C.

A code polynomial c(X) in C is a polynomial of degree n-1 or

less,



c(X) = a;

with a; € GF(2)

2 n-
+ a)X + a,X% + ...+ a,_xP7? (1)

. It is possible to arrange the coefficients of

c(X) as an n;xn, code array as shown in Figure 1.

Q9

an2

a2n2

a(nl-l)nz

a, SR .o an2_1
an2+1 o o o an2+” . o an2+n2_1
a2n,+1 *cc q2ny+p *** @2ny+ny-1

8(n1-1)ny+1 *** 3(ny-1)ny+p *°° 2(n1-1)ny+ny-1

Figure 1. The n;xn, code array of c(X).

For 0O<up<n,, the pu-th column can be put into a polynomial of

degree (n,-1)n,

or less as follows:

= n n;=-1)n
B X) =2, +an XN+ L+ a(nl_l)n2+“x( 1=1)n2
Ly i-n
= %_0 ai.n2+“x 2. (2)

Then the code polynomial c(X) can be expressed in the following

form:

c(X)

Na-
Z2

#=0

The expression
the weight of

nonzero columns

Bg(X) + A (X)X + ... + Anz_l(X)Xn2-1

1
A (X)XH. (3)
L
of (3) will be used for deriving a lower bound on
c(X). The main idea is to count the number of

in the n;xn, code array corresponding to c(X) and

the number of nonzero components in every nonzero column.
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Let g = o™ and v = o™2. Then g and y are elements in GF(29)
with orders n, and n, respectively. Let p be a non-negative
integer less than n. Since n;, and n, are relatively prime, there
exist two unique nonnegative integers, £ and m, with 0<#<n, and
0<m<n4 such that
of = gty (4)
(see Appendix A). Substituting X by o« in (3) and using (4), we
have
c(a?) = c(st™
n,-1
= I A, (™) ™tk (5)
p=0
Let g, be the multiplicative order of 2 modulo n;. Then GF(2%)
is a subfield of GF(29). It can be shown that, for 0<u<n,,
A#(ym)ym“ is an element in GF(291). Define the following
polynomial over GF(291):
n,-1
aM(x) = §° A, (™ ™xE (6)
p=0
It follows from (5) to (6) that
c(af) = al™ (gh). (7)

Clearly, ﬂ£

is a root of a({M™ (X) if «” is a root of c(X).

Next we examine the weight of a code polynomial c(X) in C.
For a given m with O<m<n,, let V(m)(c) be the cyclic code over
GF(291) of 1length n, which has the following set of elements as

zeros (or roots of its generator polynomial):

(8% : 0<i<n, and c(a?) = a(™ (%) = 0. (8)




Then it is clear that the polynomial a(m)(X) of (8) associated to
c(X) 1is a code polynomial in V(m)(c). Let d(m)(c) denote the
minimum distance of V(m)(c). Then, if a(m)(X) is not a =zero
polynomial, the weight of a(m)(X) is at least d(m)(c).

Now we define the following set of integers associated to the
code polynomonial c(X):

J(c) = {m : 0<m<n,, and c (8™ =a (M (g2) =0

for £ = 0,1,2,...,ny3-1}. (9)
Lemma 1: Consider the polynomial a(m)(X) of (6) associated to a
code polynomial c(X) in C. If m is an integer in J(c¢), then

a(m)(X) is a zero polynomial and

A,(y") =0
for 4 = 0,1,...,ny-1.
Proof: If m is an integer in J(c), then it follows from the
definition of J(c) that a{™(x) has 1,8,82,...,8" 1 as roots.
However a(m)(X) is a polynomial of degree n,-1 or less. Hence if
a(m)(X)#O, it has at most n,-1 distinct roots. As a result,

a(m)(X) must be a zero polynomial, and hence it follows from (6)

that
m -
A, (7)) =0
for M» = 0,1,...,1’12—1.

Q.E.D.

From (8) and (9), we see that, for m e J(c), VM (g
consists of only the zero polynomial, and d(m)(c) = 0.

Let J(c) denote the complement of J(c) with respect to the

set (0,1,2,...,n;-1}, i.e.,




J(c) = (0,1,2,...,ny-1} - J(c). (10)
Define
D(c) = max {d(m) (c) : meJ(c)). (11)

Then we have Lemma 2.

Lemma 2: Let c(X) be a nonzero code polynomial in C. Consider
the expression of c(X) given by (3). There are at least D(c)
A”(X)'s in (3) which are nonzero.
Proof: First we note that J(c)#{o,l,...,nl;l}, otherwise c(X)=0.
Hence J(c) is not empty. Let m be an integer in J(c). Then
c(gty™ = a(™ (gt « 0
for some £ with 0<#<n,. This says that a(m)(X) given by (6) is a
nonzero code polynomial in V(m)(c). Since the minimum weight of
v(® (c) is a{(™ (c), hence there are at least da(M (¢) Ap(ym)'s in
(6) are nonzero. This implies that there are at least d(m)(c)
Ap(X)'s in (3) are nonzero. Since this is true for all m in
J(c), hence there must be at least D(c) Ap(X)'s in (3) which are

nonzero.
Q.E.D.

Now we define a binary cyclic code associated to a nonzero
code polynomial c(X) in C. Let W(c) be the binary cyclic code of
length n, with the following set of zeros:

(") : me J(c)). (12)
Note that the order of 7“2 is n, (same as the order of ). Let
d(c) denote the minimum distance of W(c). For m e J(c), it
follows from Lemma 1 that the polynomial a(m)(X) associated to

c(X) is a zero polynomial and



nl-l

m, _ myi-n, _
Ap(’Y ) = Z_ ai-n2+p(7 ) 2 =0
= (13)
for p=0,1,2,...,ny-1. Using the coefficients of Ap(X) of (2), we
form the following polynomial:
= — 2 na=1
A, (X) =a, + an2+px + a2n2+,ux toe.. F a(nl-l)n2+pX 2
n,a-1
1l
=1 aj.pn X
i=o 2 H (14)
It follows from (13) and (14) that
x m\Nzy — my, _
A ()T A,(r7) 0
for m € J(c) and p=0,1,2,...,n,-1. Since X#(X) is binary

polynomial of degree n,-1 or less and has the elements in ((1n2)m
: me J(c)) as roots, X”(X) is a code polynomial in W(c). This
is to say that each column of the array shown in Figure 1 is a
codeword in W(c). Hence, if X#(X)#O, the weight of X“(X) is at
least d(c). Since A“(X) and K“(X) have the same coefficients,
the weight of Ap(X) is at least d(c) provided that A”(X)#o.
Summarizing the above results, we have Lemma 3.

Lemma 3: Let c(X) be a nonzero code polynomial in C. The weight
of any nonzero A“(X) associated to c(X) is at least equal to the
minimum distance d(c) of the code W(c).

AA

It follows from lLemmas 2 and 3 that we have Theorem 1.

Theorem 1: Let C be a binary cyclic code of composite 1length
n=n,xn, where n,; and n, are relatively prime. Let ¢(X) be a
nonzero code polynomial in C. Then the weight of c(X) is at

least D(c)d(c) where D(c) is given by (11) and d(c) is the minimum




weight of the binary code W(c) defined by (12).
AA
Example 1: Let n,=3 and n,=17. Let a be an element of order 51
from field GF(2%). Let g=a® and y=al7. consider a (51,18)
binary cyclic code whose =zeros (roots of the generator
polynomial) and nonzeros (roots of the parity polynomial) are
shown in Table 1. The table is a 3x17 array with 51 nonnegative
integers from 0 to 50. A number p in the array represents the
field element o”. The rows of the array are numbered from 0 to
2, and the columns are numbered from 0 to 16. If p, is at the m-
th row and the £-th column of the array, then the element «” can
be expressed as the product of ™ and ﬂz, i.e.,
o = gt M,

For example, ot = 587. The underlined numbers in the array
represent the nonzeros of the code while all the other numbers in
the array represent the zeros of the code. For example, 22 is

not a zero and «%! is a zero.

Table 1

Nonzeros of a (51,18) Binary Cyclic Code

O 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

17 20 23 26 29 32 35 38 41 44 47 50 2

lon
joo

11 14

Iu
>
W
~
B
o
>
w

46 49 1 4 11 3 16 19 22 25 28 31

Let c¢(X) be a nonzero code polynomial. From the theory of

cyclic code, we know that the zeros of the code are roots of c(X).



From Table 1 we see that, for m = 0,

c(g?) = o
for £ =0,1,...,16. For m = 1,
c(pty) = 0

for some £ = 0,1,3,4,5,12,13,14 and 16. For m = 2,

c(gt4?) = 0
for some £ = 0,2,6,7,8,9,10,11 and 15. Therefore,

J(c) = {(0) and J(c) = (1,2}.
Note that, form = 1,

c(ptyy =aMgh = o
for £ =2,6,7,8,9,10,11,15. It follows from (8) that the code
V(l)(c) has the set of zeros which includes

{p2,56,57,ﬁ8,59, 10’ﬂ11’ﬁ15}
as a subset. Since V(l)(c) has 6 consecutive zeros (from ﬁs to
ﬂll), it follows from BCH bound [16] that the minimum distance
d(l)(c) of V(l)(c) is at least 7. Note that ﬂz is a =zero of
V(l)(c) if and only if 522 is a zero of V(z)(c). Hence V(Z)(c)
is equivalent to V(l)(c) and

da(2) ¢y = a(?) (¢).
Then

D(c) = max {d(l)(c),d(z)(c)} > 7.
Since J(c)={0)}), the code W(c) has 7°=1 as the only zero. Hence the
minimum distance d(c) of W(c) is 2. Then it follows from Theorem
1 that the weight of c(X) is a least D(c)d(c)>14. Hence the
minimum distance of the (51,18) code is at least 14. Note that
the BCH bound of this code is 12 while the real minimum distance
is 14[16].
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The results derived in this section will be used to derive
lower bounds on minimum distances and the multi-level error
correcting capabilities of cyclic direct-sum codes of composite
length in the latter sections. The result given in Theorem 1 is

a slight variation of a result proved by Hartman and Tzeng[17].

III. DIRECT SUM OF TWO CYCLIC CODES
For i =1 or 2, 1let g;(X) and hj (X) be the generator and

parity polynomials of a binary (n,k;) cyclic code C;

respectively. Note that

g; (X)hi(X) = xP+1 (15)
for i =1,2. Suppose hl(X) and h,(X) are relatively prime. HNow
we want to show that the only code polynomial common to both ¢4

and C, is the zero polynomial. Let c(X) be a code polynomial

common to both Cq and Cy. Then

c(X) = a;(X)g;(X),

c(X) = a3(X)gp(X). (16)
It follows from (15) and (16) that

c(X)h; (X) = 0 mod X"+1 (17)
for 1i=1,2. Since hy (X) and h,(X) are relatively prime, there
exists two polynomials b, (X) and b, (X) such that

by (X)h, (X) + by (X)h,y(X) = 1 mod xNy1. (18)
Multiplying both sides of (18) by c(X), we have

c(X) = { by(X)c(X)hy(X) + by(X)c(X)hy(X) )} mod xD+1. (19)
It follows from (17) and (19) that

c(X) = 0 mod XM+1. (20)

11



Since c(X) is a polynomial of degree less than n, it follows from
(20) that c(X) must be the zero polynomial. This proves that C;
and C, have only the zero polynomial as the common code

polynomial.

Let g(X) be the greatest common divisor of g,(X) and g,(X),

g(X) = GCD {gq(X), g5(X)}.
Since h,(X) and h,(X) are relatively prime, it is easy to see from

(15) that

g, (X) = g(X)h,(X),
g, (X) = g(X)h4(X),

xP+1 g(X)h, (X)h, (X).

The degrees of g(X) and h(X)=h,(X)h,(X) are n-k,-k, and k;+k,
respectively. Let C be the direct sum of C; and C,. Then C is an
(n,kq+ky) linear code. We can readily see that every code
polynomial in C is divisible by g(X). Since the degree of g(X)
is n-k;-k,, hence g(X) generates C. Therefore the direct sum C
of C; and C, has g(X) and h(X)=h; (X)h,(X) as its generator and
parity polynomials.

Let A, = {0,1}kl and A, = {0,1}k2 be two message spaces. A
message from A; is denoted by ii, where i=1,2. Let A be the
Cartesian product of A, and A,. Then,

A = A XA,
= {(X1,X3) : X5 € Ay for i = 1,2).
We call A; and A, the first and second component message

spaces of A respectively; and call X, and x, the first and
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second component message of the message (§1,§2). Let €, and C,
be the codes for the component message spaces A; and A,
respectively. Then the direct-sum code C = C;8C, is an (n,k;+k,)
code for the product space A. Let V(X,,X,) denote the
codeword in C for the message (X;,X,). Then V(X;,%X,) can

be uniquely expressed as the sum of v(X;) and v(X,), where
V(X;) and V(X,) are the codewords for component messages X4

and X, in C; and C, respectively.

In [11,12], we have shown that, under certain distance
conditions, direct sum codes have multi-level error correcting
capabilities and hence are multi-level UEP codes. The main
purpose of this paper is to construct UEP codes by taking direct
sums of cyclic codes of composite length. For this purpose, we
need to review some distance properties of direct-sum codes.
These properties were proved in [11,12]. We simply state these
properties here without proofs.

The error correcting capabilities of an UEP code is
determined by its separation vector s[5,11,12]. For an m:ievel
UEP codes, the separation vector is a distance vector of m
components. In this paper, we only consider two-level UEP codes.
Consider a message (X,,X,) which consists of two parts x; and
X,, where X; and X, are k,-tuple and k,-tuple over GF(2)
respectively. Let C be the code for the message space {(§1'§2)

: %, e {0,1)% and %X, e {0,1)%?).  Let V(%X;,%X,) be the
codeword for the message (§1,§2), Then, the separation vector
of C is s = (s,,S8,) where

s, = min {W[V(X;,%X5)] : X3 = 0},

13



S, = min (W[V(Xy,%X3)] : X, = 0}, (21)
and w(v) denote the Hamming weight of v. Clearly, the minimum
distance of code C is simply dpin = min{sl,sz}. The component s,
determines the 1level of protection for component message X4
against the channel errors, and the component S, determines the
level of protection for component message §2 against the channel
errors. For a two-level UEP code sq = S,. Without 1loss of
generality, we assume that S1 > S,. The error correcting

capabilities of a two-level UEP code are stated in Theorem 2 (see

[11,12] for a proof).

Theorem 2: Consider a two-level UEP code C for the message space
A = {((X,%,) : %, € {0,1)¥1 and X, € {0,1)¥2). Let § =
(s1,S5) be the separation vector of C. Let V(¥X,,%;) and T be
the transmitted codeword and received word respectively. Then
the component message X, can be decoded correctly from r if T
contains t; = |(s1-1)/2] or fewer errors (X, may not be decoded
correctly). If r contains t, = |(s5-1)/2] or fewer errors, then
both §1 and §2 can be decoded correctly.
aA

From Theorem 2, we see that a two-level UEP code with
separation vector s = (s,,s,) protects message X, against t; =
l(s1-1)/2] or fewer errors and protects message X, against t, =
[(s,-1)/2] or fewer errors.

Now we come back to direct-sum codes. Theorem 3 states the
conditions under which a direct-sum code is a two-level UEP code
(see [11,12] for a proof).
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Theorem 3: Let C; and C, be an (n,k;) code and (n,k,) code for

message spaces A, = {0,1}kl and A, = {0,1}k2 respectively.
Suppose C; and C, have only the zero vector in common. Let C =
Cc,6C, be the direct sum of C; and C,. Suppose the following
distance conditions are satisfied:
(i) The weight of any nonzero codeword in C, is at least
d,; and
(ii) The weight of any codeword in C-C, is at least d, with
d, with 44 > d,.
Then C is a two level UEP code with a separation vector s =
(51'52)' where Sy > d1 and s, 2> d2°
2
It should be noted that Theorem 2 is also valid for the case
of s; = s, and Theorem 3 is also valid for the case of d, =d,.
However, in such a case, C is not a UEP code. In the next
section we will consider two-level UEP codes which are direct

sums of cyclic codes of composite length.

IV. TWO-LEVEL UEP CYCLIC DIRECT-SUM CODES OF COMPOSITE LENGTH

Let n=n;n, where n, and n, are relatively prime. Again let o
be an element of order n from some field GF(29). Let g=oM! and
v=aT2. Then, for any p, with 0<p<n, there exist two integers, m
and 2, with 0<m<n; and 0<#<n, such that ap=ﬁ1im.

For i=1,2, 1let C; be an (n,6kj) binary cyclic code with
generator polynonmial g;i(X) and parity pclyncmial hj (X)
respectively. Note that C€; and C, are two cyclic codes of

composite length. Let cj(X) be a code polynomial in C; for i =

15



1,2. Define

17 CQX) #OJ (€1)
c4 (X)eCq (22)
J, = [ J(cy)
C5 (X) =0
c5(X)eC, (23)
where J(c;) 1is defined by (9). It is easy to see that, for
i=1,2, a number m with 0<m<n; is in J; if and only if C; contains
g™ with £ = 0,1,...,n,-1 as zeros. Let

J; = {0,1,...,ny-1} - J4 (24)
for 1i=1,2. If ﬁﬂym is not a zero of C; for some £ with 0<4<n,,
then m is an element in Jj.

Assume that J, and J, are disjoint. Apparently, C; and C,
have no common nonzeros. Therefore, h,(X) and h, (X) are
relatively prime. The direct sum of C; and C, is an (n, Xk +k,)
cyclic code C with generator polynomial g(X) = GCD {g;(X), g9,5(X))
and parity polynomial h(X) = hj (X)h,(X).

For 0O<m<n,, let

V{m) = J v (m) (cq),
cy (X)eC, (25)
Vém) = L_J V(m) (cy) -
c5 (X)ec, (26)
where V(m)(ci) is a cyclic code associated to the code polynomial
c; (X) defined by (8). Thus Vi(m) is a cyclic code of length n,
over GF(291) where d; is the multiplicative order of 2 modulo n;
for i=1,2. The element g! is a zero of Vi(m) if and only if gf®

is a zero of Cj. From the results in Section II, we see that,
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for m e Jy, Vi(m) consists of only the zero polynomial. Let
d{m) for i=1,2 and O<m<n. Define

D, = min { af™ 3},

med | (27)

2 = mip (™). 29
Clearly,

D(c;) > a™(cy) 2 a;™ > by (29)

for any nonzero code polynomial c¢;j(X) in C; and m € Jj with i=1,2.
Then, it follows from Lemma 2 that at least D; of the n,
polynomials Ap(X) associated to any nonzero code polynomial ¢; (X)
in C¢; are nonzero for i=1,2.

Next we define two binary cyclic codes of length n, based on
C, and C, as follows:

W, = U W(c;)

Cl (X) =0
¢y (X)eCq (30)

Wy = U W(cy)
CZ (X) »0

c, (X)eC, (31)
where W(cj) is the binary cyclic code associated to a code
polynomial c; (X) defined by (12). We readily see that (y2)™ is
a zero of W; if and only if me J3 for i=1,2. Equivalently,
(¥72)® is a zero of W; if and only if p*y™ with £=0,1,...,n,-1
are zeros of Cj. Since J, and J, are disjoint, the sets of
nonzeros for W, and W, do not have any common element. Now
consider the binary cyclic code W associated to the direct sum C
=C; ® Cp,
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W= () W(c).

c(X)=0
c(X)eC (32)
Define
J = M J(c).
c(X)eC
c(X)=0 (33)

It is easy to see that

J =3, nJ,. (34)
Then (yM2)™ is a zero of W if and only if m € J. Or, equivalently,
(vP2)™ is a zero of W if and only if ﬂ¥7m with £ = 0,1,...,n5-1
are zeros of C. The set of nonzeros for W is

()™ :meJ) (35)
where J = (0,1,...,n;-1} - J,nJ,. Since J; and J, are
disjoint, we can easily see that W is the direct sum of W; and
Wy, i.e.,

W =W, 0 W,. (36)
Let d,, d, and d be the minimum distances of W;, W, and W
respectively. Then, d;2d and d,>d.

Now we examine the distance structure of the direct sum C of
C, and C,. Any code polynomial c(X) in C can be expressed as the
following sum,

c(X) = c1(X) + cy(X)
where c,(X) € C; and cy(X) € C,. Suppose c(X) € C, and c(X) = 0.
Then ¢4 (X)=0 and c(X)=c, (X). It follows from Theorem 1 that the
weight of c(X)=c,(X) is at least D(cjy)d(cy). Note that D(c,)2D,
and d(c,y)2d,. Thus the weight of c(X), denoted w(c(X)) is at
least D,d,, i.e.,

i8




w(c(X)) 2 Dyd,. (37)
Suppose c(X) € C-C,. Clearly c1(X)=0. There exists an integer m
in J, such that

ey (B4™) = 0 (38)
for some £ € (0,1,...,np~1}. Since J; and J, are disjoint, m must
be in J,. Consequently,

ey (8™ = 0 (39)
for £ = 0,1,...,ny-1. From (38) and (39), we have

c(gt™) = ¢y (B4™) + cy (4™

= ¢y (84™)
» 0

for some £ = 0,1,...,n,-1. Accordingly, we have

vi™ (c) = v(™ (cp), (40)

a(m (¢qy

a(™ (c,). (41)
It follows from Theorem 1 that the weight of c(X) is at 1least
D(c)d(c). Note that D(c) > d™ (c) = a™(c;) > af™ > p; and
d(c) > 4. Thus the weight of c(X) is at least D,d. Summarizfng
the above results, we have that

(1) For c(X) € C-C,, w(c) > D1d; and

(2) For c(x) € C, and c(x)=0, w(c) > D,d,.

Suppose D,d > D,d,. It follows from Theorem 3 that C is
a two-level UEP code for the product message space A=A XA, with
separation vector §=(sl, s,) where A1={0,1}k1, A2={0,1}k2,

slled, and 522D2d2°

Example 2: Let n,=3 and n,=17. Let a be a primitive 51-th root
of unity. Let ﬁ=a3 and 7=a17. Let C; be the (51,18) binary
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cyclic code given in Example 1. The nonzeros of C, are given in
Table 1. Let C, be the (51,16) binary cyclic code with the
following set of nonzeros:

Bt 21 =1,2,...,16}. (42)
From Table 1 and (42), we see that the sets of nonzeros for C,
and C, do not have any element in common. As a result, the
direct sum C of C; and C, is a (51,34) binary cyclic code. From
Table 1 and (42), we find that J;={0} and J,=(1,2}. Then,
J,={1,2) and J,={0}. Obviously, J; and J, are disjoint.
From Table 1, we see that the code V{l) has ﬁs, ﬂ7, ﬂ8, 59, ﬁlo
and ﬁll as zeros. By BCH bound, the minimum distance d{l) of
V{l) is at least 7. Note that the code V{z) is equivalent to
V{l) (in the sense that ﬁ‘ is a zero of V{l) if and only if ﬂzz
is a zero of V{Z)). Hence the minimum distance d{z) of V{z)
is the same as that of V{l). As a result, d{2)=d{1) > 7.
From (27), we have D;>7. Since J,={0}, the binary code W, has
only one zero which is +%=1. The minimum distance d, of W, is at
least 2. In fact W, contains the following four vectors:

(000), (110),(011), (101).
Hence d,=2.

Note that 32={0}. To determine D,, we only need to determine
the minimum distance déo) of the code Vso). Since ﬂ°=1 is a
zero of C,, ﬂ0=1 is a zero of Vz(o). Hence d{o) is at least 2.
From (28), we have D,>2. Now consider the binary cyclic code W,
Since J,={1,2}, the zeros of W, are 717=72 and (717)2=7. Thus

the minimum distance d, of W, is at least 3. In fact, W,
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consists only two codewords, (000) and (111). Hence d2=3.

The binary code W is the direct sum of W, and W,, and hence

is the entire space {0,1}3. Therefore, the minimum distance of W

is d=1.

From the above analysis, we have that Dyd > 7 and D,d, > 6.

Therefore the direct sum C of C; and C, is a (51,34) two-level UEP

cyclic code with a separation vector at least (7,6). The message
space A for C is the product of A1={0,1}18 and A2={0,1}16. Thus
C provides protection of the first 18 message bits against 3 or
fewer random errors and protection of the next 16 message bits

against 2 or fewer random errors. Note that the best single-

level error correcting (51,34) cyclic code has minimum distance

d=6[16].

Some two-level UEP cyclic codes of composite length are

given in Table 2. The nonzeros (roots of the parity polynomial)

of each code are given. The nonzeros are represented by their

exponents of «a. The true minimum distance and BCH bound of a

e

code are denoted by d and dgcy respectively. From Table 2, we

see that our algorithm gives the true minimum distances of these
cyclic codes by comparing S, with 4.
Table 2

Some Two-Level UEP Cyclic Codes of Composite Length

n k n; n, ki ky s, S; 4@ dpcy Nonzeros

51 17 3 17 1 16 17 16 16 11 0, 11, 19

51 19 3 17 1 18 17 14 14 11 11, 19

51 35 3 17 18 17 7 3 3 3 o, 3, 9, 11, 17, 15
63 30 7 9 9 21 14 12 12 8 3, 9, 11, 13, 27, 31
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V. A CLASS OF TWO-LEVEL UEP CYCLIC DIRECT-SUM CODES

There is another class of two-level UEP cyclic codes. Each
code in this class is the direct sum of two cyclic codes of
composite length. Let n=n;n, where n, and n, are odd positive
integers and relatively prime. Again, 1let o be an element of
order n from GF(29). Let p=2" and y=2"?. Let cC;; be an
(ny,kq+1) binary cyclic code whose parity polynomial h,,(X) has

the following set of roots:

m m m
{1,~ 11 Y 21 e,y 7 kl}'

(43)
The elements in the set of (43) are the nonzeros of Cy1- Let Cyy
be an (n,,k,+1) binary cyclic code whose parity polynomial hy, (X)

has the following set of roots:

2 2

(1,6°1,8%2, ..., p%ey. (44)
Then elements in the set of (44) are the nonzeros of Cope Let
d;; and d,, be the minimum distances of C;; and C,, respectively.
Let dj, and dj, be the minimum distances of the even-weight
subcodes of C;, and C,, respectively.

Now we form two longer cyclic codes from C,, and C,,. Let Cq
be an (n;n,,k;) binary cyclic code with parity polynomial

h; (X) = hy; (X)/(X+1), (45)

and let C, be an (npn,, k,) binary cyclic code with parity

polynomial
hy (X) = hys(X)/ (X+1). (46)
Clearly, the sets of nonzeros for C; and C, are (™,
m 2 .
Y2, ..,y kl} and {ﬂzl, ﬁ£2,...,ﬁ k2} respectively. It is easy
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to show that these two sets of nonzeros are disjoint. Hence
h; (X) and h,(X) are relatively prime. Note that the roots of
h,(X) are zeros of C, and the roots of h, (X) are zeros of Cq-

Let C be the direct sum of C; and C,. Then C is an (n;n,,
ki+k,) cyclic code with parity polynomial

h(X) = hy(X)hy(X). (47)
Now we examine the distance structure of the direct-sum code cC.

A code polynomial c(X) in C can be expressed as the following

sum:

c(X) = c1(X) + cy(X)
with c,(X) € ¢4 and C,(X) € C,. First we consider the case that

c(X) € c-C,
In this case, c4(X)»0. Hence, there exists an integer m € {m,,
mz,...,mkz} such that

cq (™) = o. (48)
Since 4™ is a zero of C,, we have

C(r™) = c (™ + cy(v™) = cy (v » O. (49) "
This implies that

me J(c)
where J(c) is defined by (10). Note that C has ﬁ£7m with 2 =
1,2,...,n,-1 as zeros. Thus

c(gty™ = a™ gt = o (50)
for 2 = 1,2,...,ny-1. Then the code V(m)(c) associated to c(X)
has ﬂ£ with 2 = 1,2,...,n,-1 as zeros. It follows from the BCH
bound that the minimum distance d(m)(c) of V(m)(c) is n,. Hence,

D(c) = max {(d(™(c) : m e F(c)} = n,. (51)
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It follows from Lemma 2 that all the n, polynomials, A#(X) with

=0,1,...,np-1, associated to c(X) are nonzero. Next, we want to

determine the weight of each A“(X). For 0<#<n, and

m e {0,1,...,n1-1} - (O,ml, My, eee mkl},
pty™ is a zero of C. It follows from the definition of J(c¢)
given by (9) that

J(c) 2 {0,1,...,n7-1} = {O,my, My, ..., mkl}.
This implies that the binary cyclic code W(c) associated to c(X)
is a subcode of the code C{l whose set of nonzeros is

(1, (P2)™, (M2)Bz, ., (402)" K1y, (52)
From (43) and (52), we see that C;, and CIl are equivalent. As
a result, they have the same minimum distance d,,. Therefore,
the minimum distance d(c) of W(c) is at least d,,. This implies
that the weight of every nonzero A“(X) is at 1least dyq- It
follows from Theorem 3 that the weight of c(X) 1is at 1least
D(c)d(c) 2= njpdq,. However, the weight of c(X) may be greater
than n,d,,. Note that c(X) has ﬂ£ as a zero (or root) for

2 € {0,1,2,...,ny-1} - {zl,zz,...,zkz}.
It follows from (7) that, for m=0,

c(gt) = al® (gt = o (53)
for £ e {0,1,2,...,n5-1} - (11,12,...,2k2}.
From (2) and (6), we see that a(o)(X) is a binary polynomial of
degree n,-1 or less. From (44) and (53), we see that a(o)(X) is
an even-weight code polynomial in Cyy. The coefficients of

a(o)(X) are

Ag(1), Ap(1), ~en Ay _5(1).
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Since the length of C,,, n,, is odd and ﬂ°=1 is not a zero of Cos:
the weight of an even-weight code polynomial in C,, is at most n,-
dsyye. This implies that at least d,, of the n, coefficients,
Ag(1), Aq(1), ..., Anz-l(l) are zero. This means that at least
dy, of the n, polynomials, Ag(X), Aj(X), ..., Anz-l(x) have even
weight, Which is at least d{;. As a result, the weight of c(X)

is at least

(ny=dzp)dyy + dz2di; = nadyy + (df3-dy;)das- (54)

Now we consider the case for which c(X) € C, and c(X)=0.
Then c(X)=c,(X)=0. It follows from the definition of C, that
there exists some £ € {21,22,...,£k2} for which

c(8?) = cy (8 = al® (g% « 0.

For 2 € {0,1,2,...,n2-1}-{21,12,...,2k2}, ﬂ£ is a zero of C, which
implies that

c(gh) = al® (g% = o, (55)
i.e. v(0) contains pl as a zero. From (2), (6) ,(44), and (55),
we see that a(o)(X) is an even weight binary polynomial in. Cyye
Therefore, at least dj, of the n, coefficients of a(o)(X) are
nonzero, or equivalently, at least d}, of the n, polynomials,

Ag(X)s By (X), «ee s Ay L3 (X)

are nonzero. For m € {1,2,...,n1-1} and £ € {0,1,2,...,n2-1}, we
have
c(gf™ = a® (gh) = o,
It follows from (2), (6) and Lemma 1 that
Ap(vm) =0
for pu € {0,1,2,...,n2—1) and m € {1,2,...,n1—1}. Thus, any
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nonzero A”(X) has n, nonzero components according to BCH bound.
Since c(X) contains at least dj, nonzero A“(X)'s, the weight of
c(X) is at least n,di,.

Summarizing the above results, we have the following weight
structure for the direct sum code C:

(1) For c(X) € C-C,, w(c) 2 np,dqq + dp5(diq9-d44)7

(2) For c(X) € C, and c(X)»0, w(c) > n;dj,.
Suppose C;, and C,, are chosen such that

npdyitdaa(diz=dyy) > nydip.
Then C is an (nqn,, k;+k,) cyclic two-level UEP code with
separation vector s =(sq,sS5) where

S 2 npdjy+dyp(diy-dyg),

S, 2 nidji,.
The code 1is capable of protecting the first k; message bits

against any

npdy; + dy;(dj;-dy,)
t1= -1
2

or fewer errors and protecting the next k, message bits against
any

ty = | mas,/2 | -1
or fewer errors.
Example 3: Let n,=7 and n,=5. Let C44 be the (7,4) Hamming
code with parity polynomial hll(X)=(X+1)(X3+X+1). Then the
minimum distance d,; of C;; is 3 and the minimum distance dj, of
the even weight subcode of Cy; is 4. Let C,, be the (5,5) binary

cyclic code with parity polynomial h22(X)=X5+1. Then the minimum
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distance d,, of C,, is 1 and the minimum distance d}, of the
even-weight subcode of C,, is 2. The codes C; and C, are a
(35,3) and a (35,4) cyclic codes with parity polynomials
hl(X)=X3+X+1 and hz(X)=X4+X3+X2+X+1 respectively. The direct sum
C of C; and C, is a (35,7) cyclic code with parity polynomial,

h(X)=(X3+x+1) (X3 +x3+X2+x+1) .
The separation vector s for C has two components,

S1 2 nadyy + dpp (df;=djy)

> 5x3+1x(4-3) = 16,

Sy, 2 “1d§2 > 7x2 = 14.
Using this code, the first 3 message bits will be decoded
correctly if there are no more than 7 errors in a received word,
and the next 4 message bits will be correctly decoded if there
are 6 or fewer errors in a received word. The best single-level
error-correcting cyclic code of length 35 which is capable of
correcting 7 or fewer errors is a (35,4) code. The best single-
level error correcting cyclic code of length 35 which is capable
of correcting 6 or fewer errors is a (35,7) code.

A short list of two-level UEP codes constructed based on the

above method is given in Table 3, where the nonzeros

Table 3

Some Two-Level UEP Cyclic Codes

n k n, n, k4 ko sq S» nonzeros
35 7 7 5 3 4 16 14 5, 7
51 10 3 17 2 8 22 18 3, 17

105 9 7 15 3 6 48 42 15, 21, 35



105 9 7 15 3 6 50 42 7, 15, 35

345 17 15 23 6 11 122 120 15, 23, 69

of a code are given by their exponents of a, the n-th primitive
root of unity.

The codes constructed based on the above methods are
actually direct sums of cyclic repetition codes. Van Gils has
constructed some two-level majority-logic decodable UEP cyclic
codes which are direct sums of majority-logic decodable
repetition codes [10]. Van Gils' codes form a subclass of the
codes presented in this section.

In the above construction, if we choose C, as the (njn,,k,+1)
code with parity polynomial

hy (X) = hyy(X),
then the direct-sum C of C; and C, is an (nyn,,ky+k,+1) code with
parity polynomial

h(X) = hy;(X)hy, (X)/(X+1).

In this case, if n,d,; > nyd,,, C is a cyclic code with separa-
tion vector s = (ny,d,,,n;d,5,). The proof of this result is
similar to the above one.

Example 4: 1In Example 3, if we choose C, as the (35,5) code with
parity polynomial hz(X)=h22(X)=X5+1, then the direct sum C of c,
and Cy is a (35,8) cyclic code with parity polynomial

h(X)=(X3+X+1) (X3+1) .

The separation vector of C is s = (15,7). The best single-level
triple-error-correcting code of length 35 is a (35,8) code with

minimum distance 7.
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Consider the codes of length less than 63 which we have
constructed in Example 3, 4 and Table 3. By taking s, as a lower
bound on the minimum distance of the corresponding cyclic code,
we see from [16] that this lower bound gives the true minimum

distances of these codes.

VI. DECODING

In the following, we present a procedure for decoding a
subclass of cyclic direct-sum codes of composite length with two-
level error correcting capabilities. The decoding is based on
the algebraic structure of codes developed in section II to 1IV.
Consider two cylic codes, C; and C,, of composite length n=n;n,,
where n; and n, are relatively prime. Assume that the sets, Jq
and J,, defined by (24) are disjoint. Then, the parity
polynomials, h,(X) and h,(X), of C; and C, are relatively prime.
The direct sum C of C, and C, has a separation vector s =
(s1,85) with s,2>D;d and s,>D,d,, if D,d>D,d,. Let A, and A, be
the component message spaces of C; and C, repectively. The
decoding to be presented can correctly decode any message §1
from A; if the number of transmission errors is at most [(D;d-
1) /2| with d<2. Furthermore, the decoding can correctly decode
any message X, from A, if the number of transmission errors is
at most [(D,d,-1)/2] with d,<2.

A code polynomial c(X) in C is the sum of a code polynomial
c1(X) in C; and a code polynomial c,(X) in C,, i.e.

c(X) = cy(X) + cy(X) .

For j=1,2, we express cj(X) in the following form:
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nlnz"l

cy(X) = ) a{j)xi
1=0
=0 g (56)
. nq,-1 : .
where Aﬁj)(X) = Zl aifg)+#xl'n2.
i=0 2

(57)
Note that (56) and (57) are simply the expressions of (2) and

(3). Express c(X) in the following form:

nin,-1
112 i
c(X) = ¥ a;xt
i=0
n,-1
= ¥ A“(X)X“
ny-1 i-n
where A (X) = Z aj.n_+uX 2, (59)
i=0 2
Then, it follows from (56) that
= a(1) (2)
A x) =AM (x) + A% (x) (60)

for p=0,1,...,ny-1.
Suppose that me J,. Since J, and J, are disjoint, then m

must be an integer in J,. It follows from Lemma 1 and (23)

that ,
Aﬁz)(vm) =0
and A,(/") =afl) (™ + al2) (4™
= At (/™) (61)
for m e J; and 4 = 0,1,...,n,-1. Recall that
n,-1

af™(x) = . Al1) () s (62)
p:
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is a code polynomial in the code V{m) defined by (25). Suppose
a code polynomial c(X) is transmitted. Let r(X) and e(X) be the
received and error polynomial respectively. Then,

r(X) = c(X) + e(X) (63)

We express r(X) and e(X) in the following forms:

nin,=-1
1h2 i
r(Xx) = % rixt
i=0
n2-1
= ) R”(X)X”,
p=0 (64)
n n,-1
112 i
e(X) = Y e; Xt
i=0
51-1 i-n
where R (X) = ri.n +,X 2
# i=0 2" # (66)
and
np-1 i-n
i=0 2 (67)
It follows from (63) that
R,(X) = A, (X) + E,(X) (68)

for u = 0,1,...,n2—1. Clearly, for m € 31 and 0<p<n,, we have
my, _ m m
R,(v7) = A,(v7") + E, (77)
= a(1) ,.m m
A (™) + E (4. (69)
Suppose that m € J,. We can easily show that
all) () = o,
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and A, (™ = al2) (™ (70)
for m € J, and y = 0,1,...,n,-1. Let

r'(X) = r(X) - cq(X)

nn,-1
172 1
=Y ri'xl
i=0
=1 R}, (X)X¥, (71)
p=0
ny-l i-n
where RL(X) =.§' ri!n2+px z, (72)

From (57), (64) and (71), we readily see that
' = - al1)
R, (X) = R,(X) - A{M (X). (73)
It follows from (68), (70) and (73) that
v My m, _ a{(2),.m m
R“(1 ) R“(v ) A, (") + Ep(7 ) (74)
for me€ J, and p = 0,1,...,n,-1. The set,
{Rp(ym) ! 0<m<n, and 0<u<n,}
is the syndrome of r(X), and will be used for decoding r(X).
For m e J;, multiplying both sides of (69) by Y%t  and
summing over i, we have
r(® (x) = af™ (x) + e(™ (x) (75)
where a{m)(X) is given by (62) and
nz-l

) . R, (v") y#xH (76)
I“=

r(m (x)

]

nz"l m mn
X o E, (v7) 7 HXH. (77)
p=

For m € J,, multiplying both sides of (74) by y™x# and summing
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over u, we have

rr (™ (x) = af™ (x) + e(™ (x) (78)
1’12-1
where r'(® (x) = T°  RL(+™MxH, (79)
»=0
n2—1
and af® (x) = §° a(2) (4™ Mex. (80)
p=0

Note that, for me J,;, if e(X)=0, r(M (xy = aim)(X) and is a code
polynomial in V{m). Also note that, for me J,, if e(x)=0,
r'(m)(X) = aém)(X) and is a code polynomial in Vém).

The decoding consists of two stages. First r(X) is decoded
into ¢, (X) and then r'(X) = r(X)-c;(X) is decoded into c,(X). At
the first stage, we decode r(m)(X) into a{m)(X) which depends on
D, and d, where D, is given by (28) and d is the minimum distance
of W given by (32). After a{m)(X) is decoded, we can uniquely
determine Aﬁl)(X) from {Aﬁl)(ym) :meJy) for p = 0,1,...,n,-1
(see Appendix B). Then, c¢4(X) is correctly recovered. At the
following stage, we similarly decode r'{M™ (X) into aém)(X)ﬁwhich
depends on D, and d,, where D, is given by (28) and d, is the
minimum distance of W, given by (31). Then, Aﬁz)(X),
p=0,1,...,n,-1, and c,(X) can be recovered.

There are two cases to be considered in decoding r(X) into
cl(X).

Case I

Suppose that 4 = 1. For this case, S = D;. The decoding of

r(X) into c, (X) consists of the following steps:

(1) For any m € 31, we decode the received word,
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rRM = (Ro(vm),Rl(vm)vm,---,an-l(vm)vm(nz-l)),

(81)
into a codeword,

*K(m) = (*Aél) ('ym) ,*Ail) (‘Ym) ’le sy

*Aéill(vm)vm‘“Z‘l)), (82)

in V{m) based on a certain decoding algorithm for
V{m). The codeword *A(M) jis the estimate of the real

codeword,

D (™ afD (™", Al (MR Ry

(2) For any m € Jq and 0<p<n,, we set *Aﬁl)(vm)=o.
(3) For 0<u<n, and 0<m<n,, find a codeword

2 *afM,. . *afd) im0

in W such that
n,-1
1 * . *
) afl) Mt = *alb)m.
i=0 2
Then the estimate for c,(X) is
nan,-1
1°°2 3
*ei(X) =) *allIxt,
i=0
Now we need to show that if the number of errors in e(X) |is
|(D1-1)/2] or less, the above decoding results in the correct code
polynomial ¢, (X). Suppose e(X) contains |(D;-1)/2] or fewer
errors. From (65) and (67), we see that there are at most [(Dl—
1) /2] E“(X)'s which are nonzero. Then from (77), we see that the

error polynomial e(m)(X) contains at most l[(D;-1)/2] errors.

Recall that the minimum distance of V{m) is d{m). From (25)
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and (27), we see that V{m) is capable of correcting L(Dl-l)/zj
or fewer errors. As a result, the first step of the above
decoding procedure gives the correct a{m)(X) for meJ,. Once
all a{m)(x)'s for 0<m<n, have been determined, step 3 gives a

unique solution C1(X) [see appendix B].

Case II

Suppose that the minimum distance 4 of W is 2. Since W is a
binary cyclic code, W has "1" as its zero. Therefore W is an
even-weight code. This implies that, for 0<u<n,, Ap(X) has even
weight. The procedure for decoding r(X) into C4(X) consists of
the following steps:

(1) For 0<u<n,, compute the modulo-2 sum of the coefficients
of R”(X). If the sum is not zero, then R#(X) contains
errors and E#(X)#O. We say that R#(X) is detected 1in
error. In this case, we assume that

R, (™) = all) (4™
for meJ,. 1In decoding the word

’

R = (Ro (™), Ry (™™, « oo Ry _3 (™) 4R (P271)

2 (83)
if R”(X) is detected in error, the component R”(vm)ym
is removed to create an erasure. Hence R(M) nay
contain symbol errors and erasures.

(2) For m € J,, we decode B(M into a codeword,

(*Aél)(vm),*Ail’<1m)vm....,*Aﬁjll(vm)vm(“2‘1’>

in V{m) based on a certain decoding algorithm which is

capable of handling both symbol errors and erasures.
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(3) For m € J; and 0<u<n,, we set *Aﬁl)(vm)=°-
(4) For 0<u<n, and 0<m<n,, find a codeword,

*_ (1) *_(1 *_ (1
( a£ ), aéQLp,..., afnl)_l)r£ +#),

in W, such that
n,-1
1 * i . *
) afl) (™M1 mz = Fall) (om).
i=0 2
Then the estimate for c,(x) is
nlnz—l

*e (%) =3

*a{Dxi,
i=0

For d=2, the direct sum code C has a separation vector
with S1=2D;. Now we want to show that, if there are no more
than L(2Dl—1)/2J=D1—1 errors in the error polynomial e(X), the
above decoding procedure gives the correct estimate of c, (X).

Suppose there are no more than D;-1 errors in e(X). Let f be the

number of erasures in ﬁ(m). In the worst case, each of these
erasure contains a single error from e(X). Then there are at
nost

Dy-1-~-f
t= |_*
2

undetected error symbols in ﬁ(m), each contains even number of

errors from e(X). Since

D,-1-f
f + 2 l_{___J <D15d{m)’
2

the erasures and the symbol errors will be corrected at step 2.

As a result, step 4 yields the correct code polynomial Cq (X) .
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Once c,(X) has been determined, we start to decode
r'(X)=r(X)-cq(X) into c,(X). As we mentioned earlier, the
decoding of r'(X) into c,(X) depends on the minimum distance d, of
W,. Therefore, two cases, (1) d2=1, (11), d2=2, need to be
considered. To decode r'(X) into c,(X), we simply follow the
procedure for decoding r(X) into c,(X) if we replace r(X) by
r'(X), cq(X) by c3(X), J and J, by J,, J and J, by J,, Rp(X)
by R} (X), A,(‘l) (X) by Aﬁz) (x), vi{™ by vi®™, W and W, by W,,

D, by D, d by d,, and s, by s,.

VII. BURST-ERROR-CORRECTION CAPABILITIES _OF
CYCLIC DIRECT-SUM CODES "
So far, we have studied the random error correcting
capabilities of cyclic codes through their separation vectors.

In this section, we shall see that, under some conditions, the

cyclic codes given in section IV have multi-level burst error

correcting capabilities in addition to the random -+ error
correcting capabilities specified by their separation vectors.

Let C be the direct sum of two cyclic codes, c, and Cy, of
composite length n=n,n, where n, and n, are relatively prime.
Assume that, the sets, J; and J,, defined by (24) are disjoint.
The code C has a separation vector s at least (D4, D,d,) if
D;d > D,d4,. A code polynomial c(X) in C is the sum of a code
polynomial c4(X) in C, and a code polynomial c,(X) in C,, i.e.

c(X) = cy(X) + cz(X).

Recall that, in section VI, the decoding of cj(X) relies on the
correct recovery of Aﬁj)(X) for 4 = 0,1,...,n,-1, where j =1,2
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and Aﬁj)(X) is given by (57). Now we arrange the coefficients
of ¢(X) in an n,xn, code array as shown in Figure 1. Note that
the u-th column of the code array for c(X) is simply the n,-tuple
representation of AM(X), which is given by (59). Clearly, the
coeffcients of cj(X) can also be arranged as an n;xn, code array
for which the u-th column is the n;-tuple representation of
Aﬁj)(X), where j=1,2,. Suppose c(X) is transmitted column by
column. Then, the coefficients for the recieved and error
polynomials, r(X) and e(X) can also be arranged as n,xn, arrays.
The p-th column of the n,xn, array for e(X) is the n,-tuple
representation of E#(X) and the u-th column of the n;xn, array'
for r(X) is the n,-tuple representation of R“(X). It is easy to
see that all the arguments in section VI are still valid.

Consider case I of decoding r(X) into c4(X), which is given
in section VI. Recall that d = 1 in this case. Suppose that the
nyxn, array associated to e(X) has no greater than [(Dl-l)/zj
nonzero colunn. Clearly, there are at most [(Dl-l)/zj nonzero
Ep(X)'s in e(X). As a result, a{m)(X) for méfl can be
correctly decoded at step 1. Then, c4(X) can be correctly
decoded at step 3. The correctable error patterns for decoding
r(X) into c;(X) with d = 1 includes the following categories:

(1) Any error pattern containing at most |(D;-1)/2] random

errors.
(2) Any error burst of length up to (|[(D;-1)/2]-1} nj+1.
(3) Any multiple error bursts which affects no more than

[(D;-1)/2] columns in the n;xn, array associated to
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c(X).
Once C,(X) is recovered, the component message corresponding to
¢, (X) can be determined. Thus, we have the following result:

If d=1, the component message from the component message
space of C, is protected against up to L(Dl-l)/zj random errors
and any error burst of length up to {[(Dy-1)/2|-1}-n;+1.

Similarly, we can have the following result from decoding r'(X)
into c,(X):

If d,=1, the component message from the component message
space of C, is protected against up to l(D,-1)/2] random errors
and any error burst of length up to {|(D,-1)/2]-1}-ny+1.

Consider case II of decoding r(X) into c;(X) which is' given

in section VI. Note that d4=2 in this case. Suppose the error
pattern contains D4y-1 random errors. It has been shown in
section VI that ¢, (X) can be recovered at step 4. Suppose the

error pattern is an error burst of length at most {L(Dl-l)/zj-
1}-n;+2. In the worst case, there are [(Dl-l)/2J+1 nonzero
columns in the n,xn, array associated to e(X) with at least two
columns containing only one nonzero component. Suppose that
there are f columns containing only one nonzero components in the
n{xXn, array associated to e(X) where f > 2. Thus, the f
corresponding RF(X)'s are detected to be in error at step 1.
Then, R(™ which is given by (83) contains f erasures and at
most |(D;-1)/2]+1-f undetected symbol errors. Since (|(Dy-
1) /2]+1-f})-2+f < D, for f > 2, the erasures and the symbol errors
will be corrected at step 2. Thus, c,;(X) can be correctly
docoded at step 4. Then, we have the following result:
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If d=2, the component message from the component message
space of C, is protected against up to D,;-1 random errors and any
error burst of length up to ([(D;-1)/2]-1}-n;+2.

Similarly, we can obtain the following result from decoding
r'(X) into c,(X):

If d,=2, the component message from the component message
space of C, is protected against up to D,-1 random errors and any
error burst of length up to {[(Dy-1)/2|-1} -ny+2.

Now we consider the (51,34) code given in Example 2. We
see that the first 18 message bits are protected against up to 3
random errors and any error burst of length up to 7; while the
next 16 message bits are protected against up to 2 random errors.
For the (51,19) code given in Table 2, we see that the first bit
is protected against up to 8 random errors and any error burst of
length up to 22; while the next 18 bits are protected against up
to 6 random errors and any error burst of length up to 8.
There exist unequal error protection codes for which all the
component messages are equally protected against random errors

but not equally protected against burst errors. An example is

given as follows.

Exanmple 5: Let n,=7 and ny,=9. Let o be a primitive element of
GF(26). Let ﬂ=a7 and 7=a9. Table 4 is a 7x9 array with 63
nonnegative integers from 0 to 62. A number p, in the array

represents the field element o?. If p is at the m-th row and the

£-th column of the array, then the element o’ is the product of

+® and g%, i.e.
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Table 4

Nonzeros of a (63,24) Binary Cyclic Code

0 7 14 21 28 35 42 49 56

9 16 23 30 37 44 51 58 2

18 25 32 39 46 53 60 4 11

27 34 a1* ag* 55% 62* 6* 13* 20

36 43 50 57 1 8 15 22 29

45 52* s59* 3* 10 17 24* 31* 3g*
54 61* 5 12* 19* 26* 33* 40 a7* "

Let C; by an (63,6) binary cyclic code whose nonzeros are
specified by the underlined numbers in Table 4. Let ¢, be an
(63,18) binary cyclic code whose nonzeros are specified by

numbers with * in Table 4. For example, oll is a nonzero of Cq

3

and o is a nonzero of C,. Clearly, ¢C, and C, have no nonzeros
2 1 2 n

in common. Let C be the direct sum of C; and C, which is a
(63,24) code. From Table 4, (22) and (23), we see that
J,={0,3,5,6) and J, ={0,1,2,4}. Then J, and J, are disjoint.
From Table 4, we see that Vil) has ﬂo,ﬁl,ﬁz,p3,p'3,ﬁ'2,ﬁ-1 as
zeros. Thus, the minimum distance d{l) of v{l) is at least 8.
It 1is easy to check that V{l), V{z),V{4) are equivalent.
Hence, the minimum distances d{l),diz), and d{4) of
V{l),viz), and V{4) are identical. From (27), we have D, > 8.

Since J=3J;nJ,={0}, W has only one zero which is 7°=1. The
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minimum distance d of W is at least 2. From Table 4, we see that
V£3) has ﬂ—l,ﬁo and 51 as zeros. Thus, the minimum distance
d£3) of V£3) is at least 4. We can easily check that V§3),
Vﬁs), and VéG) are equivalent. Hence, the minimum distances
d53), dés), and dés) of Vé3), Vés), and VéG) are identical.

From (28), we have D,>4. Since J,=(0,1,2,4), W, has 0, 49=42,
718=74, and 736=1 as zeros. By BCH bound, we see that the
minimum distance d, of W, is at least 4. Note that D,d>16 and
D,d,>16. Thus, C is a (63,24) code for the product message space
A=A,xA, with separation vector §=(sl,sz), where A1={0,1}6,
A2={0,1}18, §1>16 and s,>16. Since d=2, we see that the first 6
message bits of a message are protected against up to 7 random
errors and any error burst of length up to 16. However, the next
18 message bits are only protected against 7 random errors or

less.

For comparison, we see that the (63,24) primitive BCH code

can correct 7 random errors or less.
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APPENDIX A

The Unique Expression of o” as gf Mm@

In this appendix, we shall prove that «”, for 0<p<n, can be
uniquely expressed as the product of ﬂzym as given by (4),
where n=nqn,, 0<4<n,, 0<m<n,, and n,, n, are relatively parime.
Note that o is a primitive n-th root of unity, g=o™!, and y=a"2.

First, we show the existence. Since n, and n, are
relatively prime, there exist integers a and b such that

an1+bn2=p.
Clearly,
of = aMmitbn, _ (anl)a.(ang)b = ﬁavb-
Let f=a mod n, and m=b mod n,. Then -
of = gty (A-1)
where 0<f<n, and 0<m<n, .
Next, we show the uniqueness. Assume that
of = gl = pt' ', (A-2)
where 0<£,£'<n, and O<m, m'<n;. The condition (A-2) implies
ﬂz-z'vm-m'=1'

or equivalently

| - - !
gt'=t - mm

(A-3)
where -n2<£'-£<n2 and -n;<m-m'<n,.
The equation (A-3) implies #=£' and m=m', since
{ﬂz : 2 is an integer } n { Y™ : m is an integer ) = (1}.

Thus, the expression (A-1) is unique under the condition that

0<4<n, and 0<m<n,.
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APPENDIX B

The Recovery of Aﬁ{lill
In this appendix, we shall show that Aﬁl)(X) can be
recovered from the set {Aﬁl)(ym) :fme 31} as stated in section
VI, where u = 0,1,...,ny-1.
It follows from (57) that the coefficients of Aﬁl)(X) form
the n,-tuple
oD 2 2R oayn o

which is a codeword of the binary cyclic code W; defined by (30).

Note that
n,-1
1 i
Al(‘l) (‘Ym) = iz—o a{l,')z.'.p(')'m)l N2

Also note that "2, m e 31 are nonzeros of W,, where 31 is
defined by (24). From the following lemma, we can easily see
that Aﬁl)(X) is uniquely determined by the set {Aﬁl)(ym) :
meJq}.

Lemma B-1: Consider an (n,k) binary cyclic code V which has o™,

m . . e i
a2, cen kK as all jts nonzeros, where o 1s a primitive n-th

root of unity. Let v,(X) and v,(X) be code polynomials of V.
If vy(a 1)=v,(a't) for i=1,2,...,k, then v, (X)=vy(X).

Proof: Let v(X)=v;(X)+Vv,(X), which is also a code polynomial of
V. For i=1,2,...,k, vl(ami)=v2(ami) implies v(ami)=0. Combining
the fact that v(ai)=0 for i € {0,1,...,n=1}) = (my, MWy, ..., my},
we see that v(al)=0 for i=0,1,...,n-1. Note that v(X) has degree
at most n-1 which implies that a nonzero v(X) has at most n-1

distinct roots. Thus, v(X)=0. This implies that vy (X)=v,(X).
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